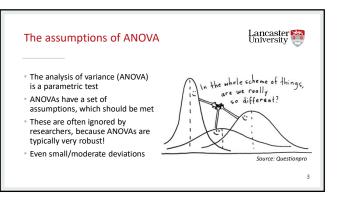
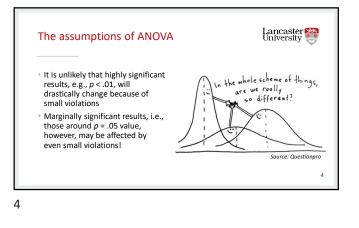
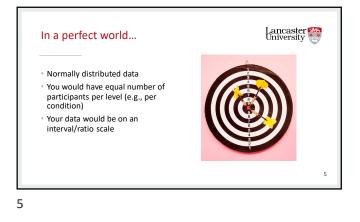

Lancaster 🎦 University 🔮

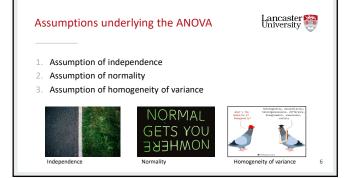
1

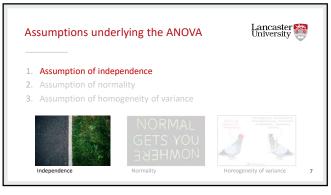
PSYC214: Statistics Lecture 3 – Assumptions of ANOVA and follow-up procedures – Part I

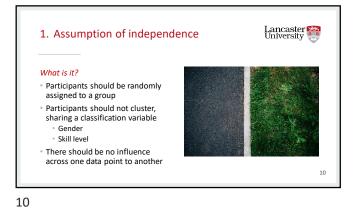

Michaelmas Term Dr Sam Russell s.russell1@lancaster.ac.uk

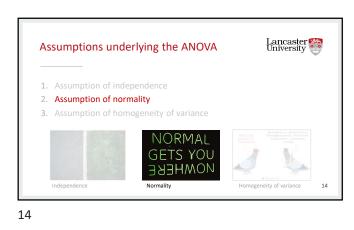

1

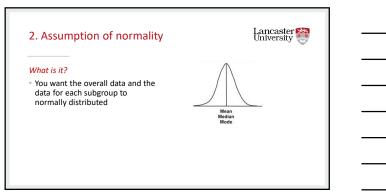


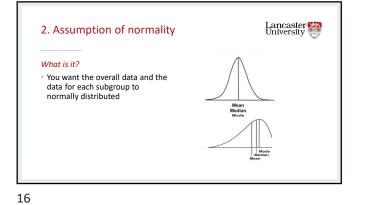

2

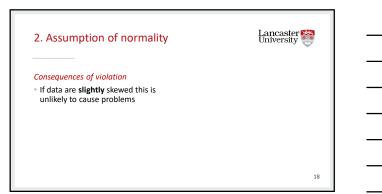

Post-hoc tests

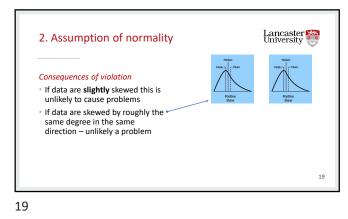


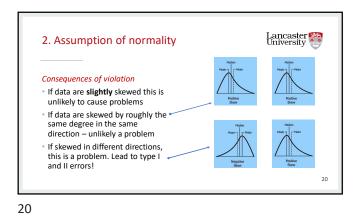


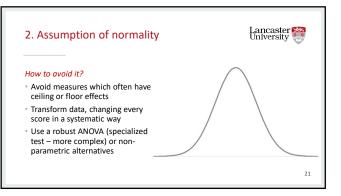


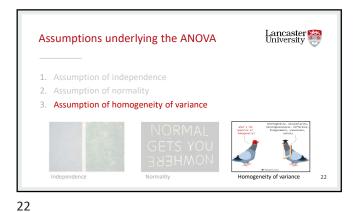


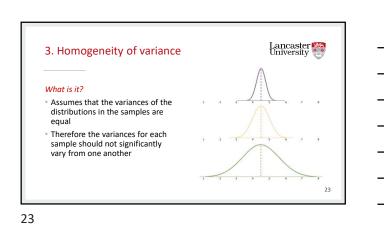


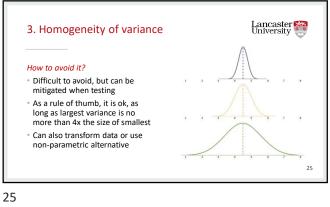


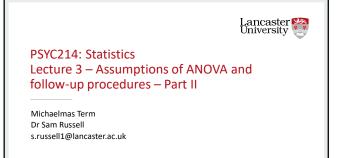


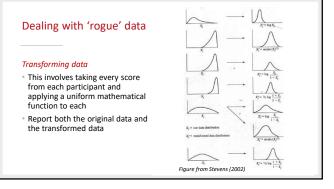


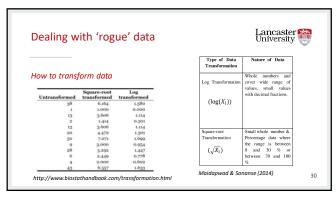

2. Assumption of normality
What is it?
You want the overall data and the data for each subgroup to normally distributed
This is because ANOVAs rely on the mean - and for skewed and bimodal data the mean is unlikely the best measure of central tendency



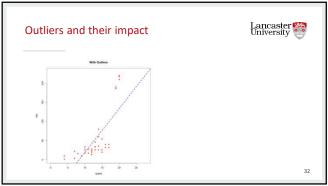


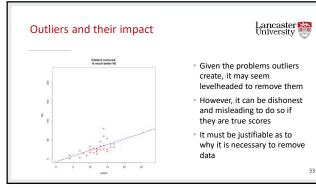




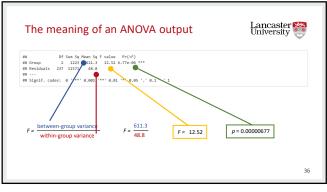


<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

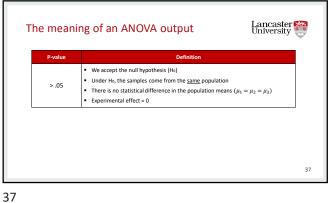

Outliers and their impact

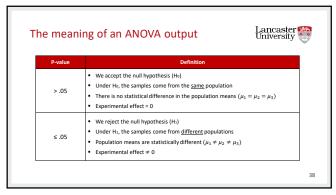

- Outliers are data points which significantly differ from other observations
- Outliers can drastically bias/change predictive models
- Predictions can be exaggerated and present high error
- Outliers not only distort statistical analyses, they can violate assumptions

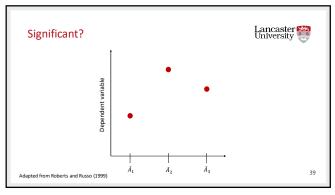
Lancaster 🏁 University 🔮

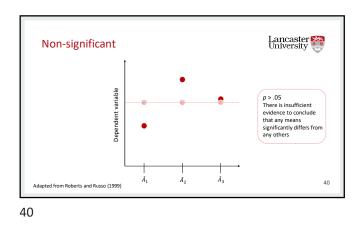

34

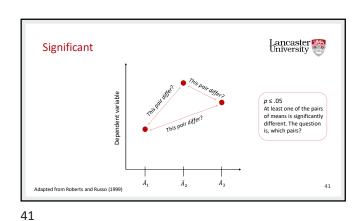
PSYC214: Statistics Lecture 3 – Assumptions of ANOVA and follow-up procedures – Part III

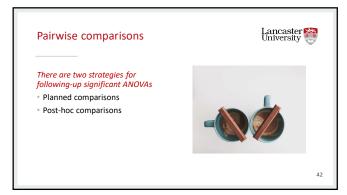

Michaelmas Term Dr Sam Russell s.russell1@lancaster.ac.uk

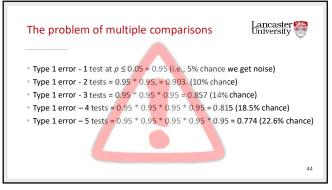

34


put Lancaster University



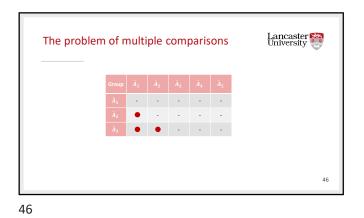






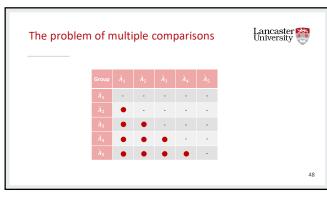
• Why not just run a bunch of t-tests?

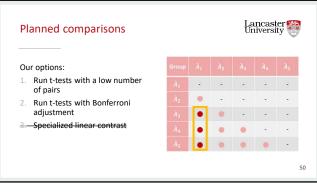
Multiple comparisons increase the probability of making a (familywise) type I error


• I.e., rejecting the null hypothesis when actually there was no effect

VE ROUDON NE ROUDON CAN REAL CAN REAL C	NK BETHEEN INN JELDY SHIS AND ADAE P > 0.05).	VE RONONO LINK GEWEIN TAN BELV BERKS AND ACKE (P > 0.05)	VE ROMONO LINK GEVEN GREY BLIP BERG RID AOKE (P > 0.05)
---	--	--	---




44

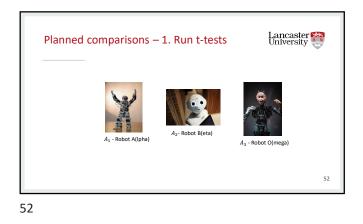

Planned comparisons

Lancaster 🤒 University

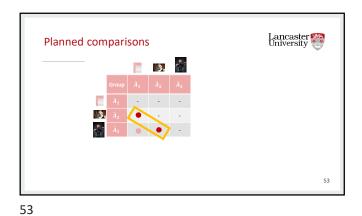
- Focussed approach to examine specific group differences
 Perfect when certain hypothese
- Perfect when certain hypotheses can be tested without comparing all combinations of means
 Should be pre-specified
- Need to keep the number of planned comparisons as low as possible to negate Type I errors – (number of levels – 1)

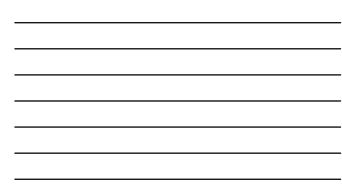
\hat{A}_1		-	-	÷	
	•	-	-	-	-
	•	•	-		-
	•	•	•		
	•				-

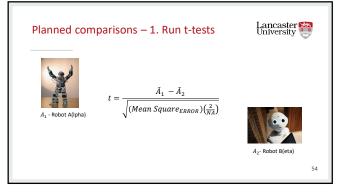
49

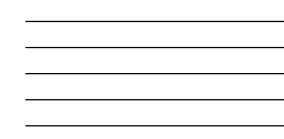


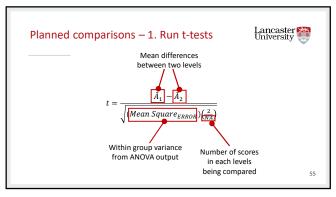
50

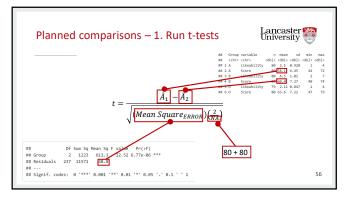

Planned comparisons – 1. Run t-tests

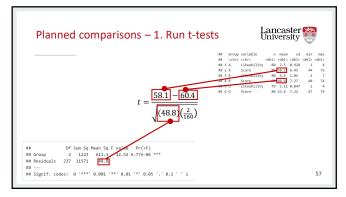

- Lancaster 🎇 University 😁
- Accept that we have inflated our risks
- Keep the number of planned comparisons as low as possible to negate Type I errors – (number of levels – 1)
- Even with two tests, however, our chance of a Type I error is 10%!

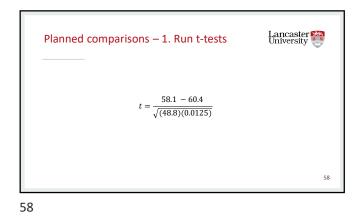


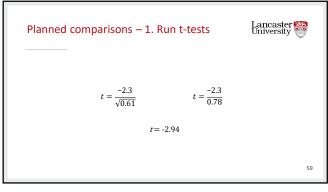


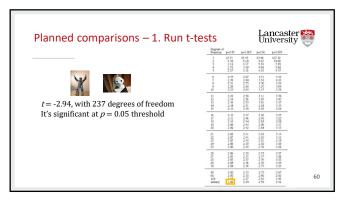


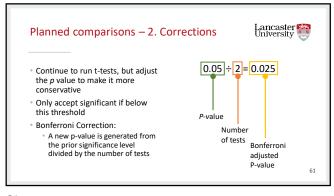


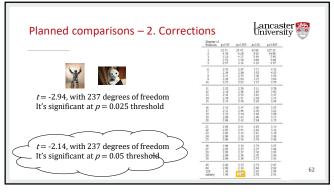


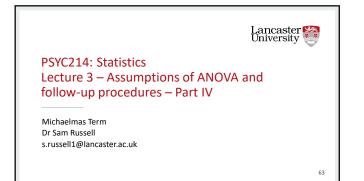


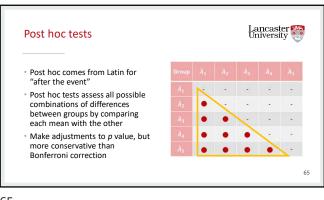


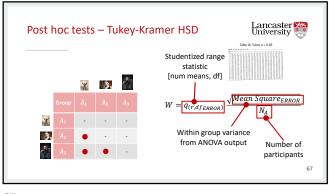




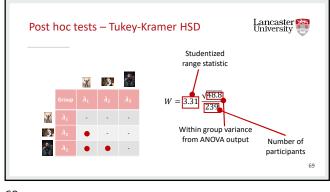


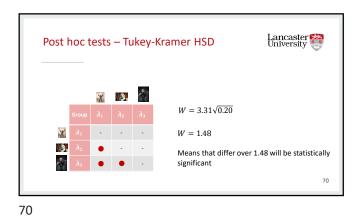




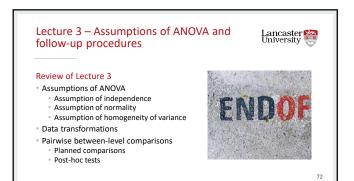


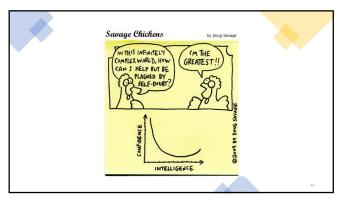



Post hoc tests					Lancaster University
Method	Equal N F	Normality	Use	Error control	Protection
Fisher PLSD	Yes	Yes	Yes	All	Most sensitive to Type 1
Tukey-Kramer HSD	No	Yes	Yes	All	Less sensitive to Type 1 than Fisher PLSD
Spjotvoll-Stoline	No	Yes	Yes	All	As Tukey-Kramer
Student-Newman Keuls (SNK)	Yes	Yes	Yes	All	Sensitive to Type 2
Tukey-Compromise	No	Yes	Yes	All	Average of Tukey and SNK
Duncan's Multiple Range	No	Yes	Yes	All	More sensitive to Type 1 than SNK
Scheffé's S	Yes	No	No	All	Most conservative
Games/Howell	Yes	No	No	All	More conservative than majority
Dunnett's test	No	No	No	T/C	More conservative than majority
Bonferroni	No	Yes	Yes	All, TC	Conservative



				12	b	le	IX	: 1	u	ke	y (α	= ().(5					Lancaster 🧱 University
Toble ()	(ka) St	udentize	d range	critical	values	[α = .0	5]								_					
Error	2					7			10		12	13	14	15	16	17	18	19	20	
	-	-								50.6	52.0	53.2	54.3	55.4	56.3	57.2	58.0	58.8	59.6	
1	18.0	27.0 8.33	32.8	37.1	40.4	43.1	45.4	47.4	49.1	14.4	14.7	15.1	15.4	15.7	15.9	16.1	16.4	16.6	16.8	
23	4.50	5.91	6.82	7.50	8.04	8.43	8.85	9.18	9.46	9.72	9.95	10.2	10.3	10.5	10.7	10.8	11.0	11.1	11.2	
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83	8.03	8.21	8.37	8.52	8.66	8.79	8.91	9.03	9.13	9.23	
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	7.17	7.32	7,47	7.60	7.72	7.83	7.93	8.03	8.12	8.21	
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49	6.65	6.79	6.92	7.03	7.14	7.24	7.34	7.43	7.51	7.59	
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16	6.30	6.43	6.55	6.66	6.76	6.85	6.94	7.02	7.10	6.87	
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.37	5.92	6.05	6.18	6.29	6.39	6.48	6.36	6.44	6.51	6.58	6.64	
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74	5.87	5.98	5.93	6.19	6.11	6.19	6.27	6.34	6.40	6.47	
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	5.72	5.71	5.93	5.90	5.98	6.06	6.13	6.20	6.27	6.33	
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.27	5.39	5.51	5.61	5.71	5.30	5.88	5.95	6.02	6.09	6.15	6.21	
12	3.08	3.77	4.20	4.51	4.75	4.95	5.05	5.19	5.32	5.43	5.53	5.63	5.71	5.79	5.86	5.93	5.99	6.05	6.11	
13	3.06	3.73	4.15	4.43	4.64	4.83	4.00	5.13	5.25	5.36	5.46	5.55	5.64	5.71	5.79	5.85	5.91	5.97	6.03	
15	3.01	3.67	4.06	4.37	4.59	4.78	4.94	5.08	5.20	5.31	5.40	5.49	5.57	5.65	5.72	5.78	5.85	5.90	5.96	
15	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15	5.26	5.35	5.44	5.52	5.59	5.66	5.73	5.79	5.84	5.90	
17	2.98	3.63	4.02	4.30	4.52	4.70	4.85	4.99	5.11	5.21	5.31	5.39	5.47	5.54	5.61	5.67	5.73	5.79	5.84	
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07	5.17	5.27	5.35	5.43	5.50	5.57	5.63	5.69	5.74	5.79	
19	2.96	3.59	3.98	4.25	4,47	4.65	4.79	4.92	5.04	5.14	5.23	5.31	5.39	5.46	5.53		5.65	5.66	5.75	
20	2.95	3.58	3.96	4.23	4,45	4.62	4.77	4.90	5.01	5.11	5.20		5.36	5.45	5.49		5.49	5.55	5.59	
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92	5.01	5.00	5.08	5.15	5.21	5.27	5.33	5.38	5.43	5.47	
30	2.89		3.85	4.10	4.30	4.46	4.60	4.72	4.82	4.92	4.90		5.04	5.11	5.16		5.27	5.31	5.36	
-40	2.86			4.04	4.23	4.39	4.44	4.65	4.65	4.73	4.81	4.88	4.94	5.00	5.06		5.15	5.20	5.24	
60	2.83	3.40	3.74	3.98	4.10	4.24	4.36	4.47	4.56	4.64	4.71	4.78	4.84	4.90	4.95	5.00	5.04	5.09	5.13	
120	2.80		3.68	3.86	4.03	4.17	4.29	4.39	4.47	4.55	4.62	4.68	4,74	4.80	4.85	4.89	4.93	4.97	5.01	68





Post hoc tests – Tukey-Kramer HSD • Take home message • As you add more and more mean comparisons, you require larger critical values (q) in the standardized table to find a statistical difference! • As such, test what you need, not what you don't!

